
Sensitivity analysis for shape perturbation of cavity or
internal crack using BIE and adjoint variable approach

M. Bonnet a,*, T. Burczy�nnski b, M. Nowakowski b

a CNRS URA 7649, Laboratoire de Mecanique des Solides, Ecole Polytechnique, 91128 Palaiseau Cedex, France
b Department for Strength of Materials and Computational Mechanics, Silesian University of Technology, Konarskiego 18a,

44-100 Gliwice, Poland

Received 26 September 2001; received in revised form 11 January 2002

Abstract

This paper deals with the application of the adjoint variable approach to sensitivity analysis of objective functions

used for defect detection from knowledge of supplementary boundary data, in connection with the use of BIE/BEM

formulations for the relevant forward problem. The main objective is to establish expressions for crack shape sensi-

tivity, based on the adjoint variable approach, that are suitable for BEM implementation.

In order to do so, it is useful to consider first the case of a cavity defect, for which such boundary-only sensitivity

expressions are obtained for general initial geometry and shape perturbations. The analysis made in the cavity defect

case is then seen to break down in the limiting case of a crack. However, a closer analysis reveals that sensitivity

formulas suitable for BEM implementation can still be established. First, particular sensitivity formulas are obtained

for special shape transformations (translation, rotation or expansion of the crack) for either two- or three-dimensional

geometries which, except for the case of crack expansion together with dynamical governing equations, are made only

of surface integrals (three-dimensional geometries) or line integrals (two-dimensional geometries). Next, arbitrary shape

transformations are accommodated by using an additive decomposition of the transformation velocity over a tubular

neighbourhood of the crack front, which leads to sensitivity formulas. This leads to sensitivity formulas involving

integrals on the crack, the tubular neighbourhood and its boundary. Finally, the limiting case of the latter results when

the tubular neighbourhood shrinks around the crack front is shown to yield a sensitivity formula involving the stress

intensity factors of both the forward and the adjoint solutions. Classical path-independent integrals are recovered as

special cases.

The main exposition is done in connection with the scalar transient wave equation. The results are then extended to

the linear time-domain elastodynamics framework. Linear static governing equations are contained as obvious special

cases. Numerical results for crack shape sensitivity computation are presented for two-dimensional time-domain

elastodynamics. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The consideration of sensitivity analysis of integral functionals with respect to shape parameters arises in
many situations where a geometrical domain plays a primary role; shape optimization and inverse problems
are the most obvious, as well as possibly the most important, of such instances.
It is well known that, apart from resorting to approximative techniques such as finite differences, shape

sensitivity evaluation can be dealt with using either the direct differentiation approach or the adjoint
variable approach (see, e.g. Burczy�nnski, 1993b), the present paper being focused on the latter. Besides,
consideration of shape changes in otherwise (i.e. for fixed shape) linear problems makes it very attractive to
use boundary integral equation (BIE) formulations, which constitute the minimal modelling as far as the
geometrical support of unknown field variables is concerned.
In the BIE context, the direct differentiation approach rests primarily upon the material differentiation of

the governing integral equations. This step has been studied by many researchers, from BIE formulation in
either singular form (Barone and Yang, 1989; Mellings and Aliabadi, 1995) or regularized form (Bonnet,
1995b; Matsumoto et al., 1993; Nishimura et al., 1992; Nishimura, 1995). Following this approach, the
process of sensitivity computation needs the solution of as many new boundary-value problems as the
numbers of shape parameters present. The fact that they all involve the same, original, governing operator
reduces the computational effort to the building of new right-hand sides and the solution of linear systems
by backsubstitution. The usual material differentiation formula for surface integrals is shown in Bonnet
(1997) to be still valid when applied to strongly singular or hypersingular formulations. Thus, the direct
differentiation approach is in particular applicable in the presence of cracks.
The adjoint variable approach is even more attractive, since it requires the solution of only one new

boundary-value problem (the so-called adjoint problem) per integral functional present (often only one),
whatever the number of shape parameters. In connection with BIE formulations alone, the adjoint variable
approach has been successfully applied to many shape sensitivity problems (see, e.g. Aithal and Saigal,
1995; Bonnet, 1995a; Burczy�nnski, 1993a; Burczy�nnski and Fedelinski, 1992; Burczy�nnski et al., 1995; Choi
and Kwak, 1988; Meric, 1995). This relies heavily upon the possibility of formulating the final, analytical
expression of the shape sensitivity of a given integral functional as a boundary integral that involves the
values taken by the primary and adjoint states on the boundary. However, obtaining this boundary-only
expression raises mathematical difficulties when the geometrical domain under consideration contains
cracks or other geometrical singularities; non-integrable terms associated with, e.g. crack tip singularity of
field variables appear in some expressions.
This paper deals with the formulation of the adjoint variable method applied to sensitivity analysis, in

connection with the use of BIE formulations for the transient wave equation. Typical problems where this
approach is useful are inverse problems of cavity or crack detection from transient wave measurements on a
part of the external boundary, where the integral functionals considered express the gap between measured
and computed data on the external boundary, e.g. in the form of a least-squares distance. However, the
sensitivity results are derived for more general boundary integral functionals. The formulation of the ad-
joint problem and the corresponding boundary-only formula for the shape sensitivity of the functional are
established for the case of an unknown cavity. The latter is then shown to become inconsistent in the limit
when the cavity becomes a crack, due to the non-integrability of a certain domain integral, causing an
integration-by-parts process to break down. However, resting on the analysis made for the case of a cavity,
functional shape sensitivity expressions consistent with the use of BIE formulations and applicable to crack
identification problems are derived in three different forms. Firstly, simple shape transformations (trans-
lations, rotations, expansion) are considered. Secondly, a sensitivity formula involving integrals on the
crack, on an arbitrary tubular neighbourhood of the crack front and on its boundary is derived. Thirdly,
the limiting case of the latter result when the tubular neighbourhood shrinks around the crack front is
shown to yield a sensitivity formula involving the stress intensity factors of both the forward and the
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adjoint solutions. All sensitivity results presented here are obtained from the formulation of the continuous
problem, i.e. are not directly obtained from the BIE formulations but are tailored for use in conjunction
with the BEM. It is also possible to define adjoint problems and sensitivity results directly from the BIE
formulations (Bonnet, 2001).

2. Motivation for shape sensitivity analysis

Consider a bounded domain B with external boundary S which contains a defect in the form of either a
cavity V of boundary C (Fig. 1a) or a crack with crack surface C (Fig. 1b); C is not assumed to be simply
connected (i.e. multiple defects are not ruled out). Let X denote the actual body (i.e. containing the defect):
X ¼ B n V or X ¼ B n C.
The framework adopted in this paper is that of transient linear wave propagation. Both scalar and vector

(elastodynamic) cases are considered. In the interest of clarity, the investigation is first carried out in detail
for scalar wave problems (Sections 3–7). The corresponding developments and results for elastodynamics
are then presented in Section 8. Three-dimensional configurations are assumed unless explicitly stated
otherwise.
The shape and position of the boundary C characterizing the defect are unknown. Assuming that the

defect surface is flux-free, the primary physical variable of interest u (e.g. acoustic pressure), termed ‘po-
tential’, and its normal derivative p ¼ ou=on are related by the field equation:

Du � 1

c2
€uu ¼ 0 ðin XÞ ð1Þ

(where c is the wave velocity), the boundary conditions:

u ¼ �uu ðon SuÞ; p ¼ �pp ðon SpÞ; p ¼ 0 ðon CÞ ð2Þ

(where Su, Sp define a partition of S), and the initial conditions:

u ¼ _uu ¼ 0 in X; at t ¼ 0: ð3Þ

In the case of a crack, the variable u is allowed to jump across C; sut � uþ � u� 6¼ 0. The problem thus
defined is usually referred to as the forward, or primary, problem.
Consider the problem of determining the shape and position of the defect using experimental data and

physical quantity governed by problem (1)–(3), as in ultrasonic measurements. The lack of information
about V and C is compensated by some knowledge about u on S (redundant boundary data). Assume for
example that a measurement ûuðx; tÞ of u (resp. p̂pðx; tÞ of p) is available for x 2 Sp (resp. x 2 Su) and t 2 ½0; T �.
The usual approach for finding C is the minimization of some distance J between the computed and
measured quantities, e.g.

Fig. 1. A body with internal defects: (a) cavities and (b) cracks.
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JðCÞ ¼ JðuC; pC;CÞ ¼
1

2

Z T

0

Z
Sp

ðûu � uCÞ2 dS dt þ
1

2

Z T

0

Z
Su

ðp̂p � pCÞ2 dS dt; ð4Þ

where (uC; pC) pertains to the solution of problem (1)–(3) for a given C. Using classical optimization
techniques, the minimization of J with respect to C needs in turn, for efficiency, the evaluation of the
functional J and its gradient with respect to perturbations of C.
Other kinds of sensitivity problems with different motivations (e.g. optimization) can be considered as

well. Let us thus introduce the following generic objective function:

JðCÞ ¼ JðuC; pC;CÞ ¼
Z T

0

Z
Sp

uuðuC; x; tÞdS dt þ
Z T

0

Z
Su

upðpC; x; tÞdS dt: ð5Þ

Since (i) functionals J of the type (5) depend only on boundary quantities, (ii) the forward problem (1)–
(3) is linear and does not involve sources distributed over the domain X, and (iii) variations of boundary
shapes are of primary concern, the boundary element method (recent expositions of which are, e.g. Alia-
badi, 2001; Bonnet, 1999; Wrobel, 2001) is adopted as the solution tool for the forward problem (1)–(3),
and the adjoint problem as well later on.

3. Forward problem in terms of boundary integral equations

It is possible to distinguish two basic approaches for solving the forward problems formulated in the
previous section by the boundary element method. One is based on the time-dependent fundamental so-
lution (time-domain formulation), the other uses the time-independent fundamental solution together with
the dual reciprocity technique. Both are abundantly documented, see, e.g. the review papers by Beskos
(1987, 1997) and the numerous references therein.
The first approach applied to the cavity problem leads to the following BIE in the time domain:

1

2
uðx; tÞ þ

Z
--
oX

Hðx; y; tÞHuðy; tÞdSy �
Z
oX

Gðx; y; tÞHpðy; tÞdSy ¼ 0; ð6Þ

where Gðx; y; tÞ is a time-dependent fundamental solution of wave equation, i.e. solves:

DG � 1

c2
€GG þ dðy� xÞdðtÞ ¼ 0; x; y 2 Rm; m ¼ 2 or 3;

and Hðx; y; tÞ ¼ nðyÞ � $yGðx; y; tÞ (the symbol H denotes time convolution). Numerical solution of the
forward wave propagation problem is obtained after discretizing both space and time variations. The
boundary is divided into boundary elements. The observation time is divided into time-steps. The potential
uðy; tÞ and the flux pðy; tÞ are approximated within each boundary element and each time-step by suitable
interpolation functions. After such discretization the BIE is transformed into an algebraic matrix equation
which is solved step-by-step.
Alternatively, if the dual reciprocity approach (Partridge et al., 1992) is used, the acceleration inside X is

approximated by a set of A given co-ordinate functions raðyÞ:

€uuðy; tÞ ¼
XA

a¼1
€ssaðtÞraðyÞ;

2368 M. Bonnet et al. / International Journal of Solids and Structures 39 (2002) 2365–2385



where saðtÞ is a set of unknown, time-dependent, functions. The BIE takes the form:
1

2
uðx; tÞ þ

Z
--
oX

Hðx; yÞuðy; tÞdSy �
Z
oX

Gðx; yÞpðy; tÞdSy

¼ 1

c2
XA

a¼1

1

2
~uuaðx; tÞ

�
þ
Z
--
oX

Hðx; yÞ~uuaðy; tÞdSy �
Z
oX

Gðx; yÞ~ppaðy; tÞdSy

�
€ssaðtÞ; ð7Þ

where Gðx; yÞ is the time-independent fundamental solution of the Laplace equation:
DG þ dðy� xÞ ¼ 0; x; y 2 Rm; m ¼ 2 or 3

and ~uuaðy; tÞ is a particular, known, solution to the field equation D~uua ¼ raðyÞ and ~ppaðy; tÞ is the corre-
sponding flux at the boundary.
Either Eq. (6) or Eq. (7) can be applied to the cavity problem. If these equations are used to the crack

problem with collocation points x on both crack faces C
, then two identical equations would be formed,
with the resulting set of equations being singular. In order to overcome this problem without the use of the
subdivision technique, which is not convenient in geometrical inverse problems and variable domains, a
new independent equation for the flux, obtained by evaluating the normal derivative of the potential
equation at collocation points x 2 C, is used. This flux BIE reads

p
ðx; tÞ þ n

i ðxÞ H;iðx; y; tÞHsutðy; tÞdSy þ n


i ðxÞ
Z

S
H;iðx; y; tÞHuðy; tÞ½ � G;iðx; y; tÞHpðy; tÞ�dSy ¼ 0 ðx 2 C
Þ;

ð8Þ
when obtained from the time-domain potential BIE (6), and

p
ðx; tÞ þ n

i ðxÞ H;iðx; yÞsutðy; tÞdSy þ n


i ðxÞ
Z

S
H;iðx; yÞuðy; tÞ½ � G;iðx; yÞpðy; tÞ�dSy

¼ 1

c2
XA

a¼1
~ppaðx; tÞ

�
þ niðxÞ

Z
S

H;iðx; yÞ~uuaðy; tÞ
h

� G;iðx; yÞ~ppaðy; tÞ
i
dSy

�
€ssaðtÞ ðx 2 C
Þ; ð9Þ

when obtained from the dual-reciprocity potential BIE (7), having used that the particular solutions ~uua is
continuous across the crack. Hence, the forward problem for the embedded crack is formulated as either (6)
collocated on S and (8) collocated on C (using a time-domain BIE formulation) or (7) collocated on S and
(9) collocated on C (using a dual-reciprocity BIE formulation).
Note that the primary crack unknown in both flux equations is the jump sutðy; tÞ; this is sufficient for the

present purposes. However one might also use the so-called dual formulation (Portela et al., 1992), whereby
both the potential and the flux integral equations are considered for collocation points on C; in that case, uþ

and u� are recovered separately. The dual formulation can be considered for the BIEs in either time-domain
or dual-reciprocity forms.
Irrespective of the specific BIE formulation being used, S and C are divided into boundary elements, and

potentials and fluxes within each element are approximated using the same spatial interpolation functions.
In the time-domain formulation, a time interpolation is introduced as well, which results in a system of
linear equations having a discrete convolution structure. Alternatively, in the dual-reciprocity formulation,
the coefficients €ssaðtÞ are expressed in terms of the unknown nodal accelerations. As a result, a system of
ordinary differential equations in time is obtained. In all cases, a time-stepping scheme is finally performed.

4. Sensitivity analysis

Consider in the m-dimensional Euclidean space Rm, m ¼ 2 or 3, a body Xb whose shape depends on a
finite number of shape parameters b ¼ ðb1; b2; . . .Þ. Shape parameters are treated as time-like parameters
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using a continuum kinematics-type Lagrangian description and initial configuration X0 conventionally
associated with b ¼ 0 (Bonnet, 1995b; Burczy�nnski et al., 1995; Petryk and Mr�ooz, 1986):

x 2 X0 ! xb ¼ Uðx; bÞ 2 Xb; where ð8x 2 X0Þ; Uðx; 0Þ ¼ x:

The geometrical transformation Uð�; bÞ must possess a strictly positive Jacobian for any given b. Since only
first-order derivatives with respect to b are considered in this paper, attention is, without loss of generality,
restricted to the consideration of a single shape parameter b.
The initial transformation velocity field hðxÞ, defined by

hðxÞ ¼ oUðx; bÞ
ob

����
b¼0

:

is the ‘initial’ velocity of the ‘material’ point which coincides with the geometrical point x at ‘time’ b ¼ 0.
The following relations hold between the total (or ‘Lagrangian’, or ‘material’) derivative f } ¼ df =db

and the partial (or ‘Eulerian’) derivative f 0 ¼ of =ob of any sufficiently regular function f ðx; bÞ:

f
}
¼ f 0 þ $f � h; ð$f Þ} ¼ $ðf

}
Þ � $f � $ � h: ð10Þ

The material derivatives of generic domain and boundary integrals are expressed by (see, e.g. Petryk and
Mr�ooz, 1986):

d

db

Z
X

f dX ¼
Z

X
ðf
}
þ f divhÞdX; X : any domain; ð11Þ

d

db

Z
S

f dS ¼
Z

S
ðf
}
þ f divS hÞdS; S : any surface: ð12Þ

The surface divergence is defined by divS h ¼ divh � n � $h � n, where n is the unit normal vector.
One assumes here that the external boundary S and its neighbourhood is unaffected by the shape

transformation, so h ¼ 0 and $h ¼ 0 on S. However, this is not true when emerging cracks are considered:
in this case, h and $h do not vanish on some neighbourhood of the emerging point (or edge in three-
dimensional problems).

5. Shape sensitivity: adjoint problem and domain integral formulation

Introduce the following Lagrangian:

Lðu; v; p; q;CÞ ¼ Jðu; p;CÞ þ
Z T

0

Z
X

$u � $v
�

þ 1

c2
€uuv
�
dXdt �

Z T

0

Z
Su

ðu � �uuÞqdS dt

�
Z T

0

Z
Su

pvdS dt �
Z T

0

Z
Sp

�ppvdS dt; ð13Þ

in which the weak formulation of the forward wave problem (1)–(3) appears as an equality constraint term
added to the objective function J, the Lagrange multipliers being the trial potential v and flux q.
Taking into account Eqs. (10)–(12), the total material derivative of the Lagrangian (13) with respect to a

variation of the domain can be expressed as:
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d

db
Lðu; v; p; q;CÞ ¼

Z T

0

Z
X

$u
} � $v

(
þ 1

c2
€uu
}
v

)
dXdt �

Z T

0

Z
Su

qu
}
dSdt �

Z T

0

Z
Su

v



�
oup

op

�
p
}
dS dt

þ
Z T

0

Z
Sp

ouu

ou
u
}
dS dt þ

Z T

0

Z
X

$u � $v
��

þ 1

c2
€uuv


divh � ð$u � $v þ $v � $uÞ : $h

�
dXdt:

ð14Þ

Note that the terms containing ðv}; q}Þ do not appear in this result: they merely reproduce the forward
problem constraint on ðu; pÞ and thus collectively vanish if ðu; pÞ is the solution to (1)–(3).
For cracks, the partial derivative ð$uÞ0 has generally a r�3=2 singularity along the crack edge dC, while

$ðu}Þ and $u have the same r�1=2 singularity, where r is the distance to dC. For this reason, the total de-
rivative u

}
has been introduced in (14) instead of the partial derivative u0. The derivations made in this

section are therefore valid for both cavity and crack problems.
At this point, it is useful to remark that since the initial conditions uð�; 0Þ ¼ _uuð�; 0Þ hold for any location

of the assumed defect, one should assume u
}ð�; 0Þ ¼ _uu

}
ð�; 0Þ as well. One then has:Z T

0

€uuvdt ¼ ð _uuv � _vvuÞ
t¼T

���� þ
Z T

0

u€vvdt; ð15Þ

Z T

0

€uu
}
vdt ¼ ð _uu

}
v � _vvu

}Þ
t¼T

���� þ
Z T

0

u
}
€vvdt: ð16Þ

In Eq. (14), the trial function v is now chosen so that the terms which contain u
}
combine to zero for any u

}
p
}
.

Using Eq. (15), one gets:

Z T

0

Z
X

$v � $u
}

�
þ 1

c2
€vvu
}
�
dXdt þ

Z
X

_uu
}
v

 
� _vvu

}
!

t¼T dXj �
Z T

0

Z
Su

qu
}
dS dt

�
Z T

0

Z
Su

v



�
oup

op

�
p
}
dS dt þ

Z T

0

Z
Sp

ouu

ou
u
}
dS dt ¼ 0 8u

}
; p
}� �

: ð17Þ

This last result is interpreted as the weak formulation of the adjoint problem, whereby the unknowns v; q
solve the wave equation (1) together with the boundary conditions

v ¼
oup

op
ðon SpÞ; q ¼ � ouu

ou
ðon SuÞ; q ¼ 0 ðon CÞ; ð18Þ

and the final conditions

v ¼ _vv ¼ 0 ðin X; at t ¼ T Þ: ð19Þ

The adjoint problem (1), (18), (19) appears to be, as is generally the case, a backward evolution problem. It
can be solved in the same way as the forward problem (1)–(3), i.e. using either the time domain formulation
(6) or the dual reciprocity formulation (7), but with time reversed.
Finally, noting that initial conditions (3) and (19) imply:

Z T

0

€uuCvC dt ¼ _uuCvC

t¼T

t¼0

����� �
Z T

0

_uuC _vvC dt ¼ �
Z T

0

_uuC _vvC dt:
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Eq. (14) allows to express the derivative of J in terms of the primary and adjoint solutions:

dJ

db
ðCÞ ¼ d

db
LðuC; vC; pC; qC;CÞ

¼
Z T

0

Z
X

$uC � $vC

��
� 1

c2
_uuC _vvC



divh � ð$uC � $vC þ $vC � $uCÞ : $h

�
dXdt: ð20Þ

6. Shape sensitivity: boundary integral formulation (cavity problem)

The formula (20) for the sensitivity ofJ is expressed by a domain integral. It is therefore not suitable for
BEM-based computations. This section aims to show that Eq. (20) applied to the cavity problem can be
converted into an equivalent, boundary-only, expression.
This step requires integrations by parts. First, it is easy to prove (for example using component notation)

that, for arbitrary (sufficiently smooth) scalar fields u; v:

ð$u � $v þ $v � $uÞ : $h ¼ div½ð$u � $v þ $v � $uÞ � h� � ½ðDuÞ$v þ ðDvÞ$u þ $ð$u � $vÞ� � h:
Hence, since ðu; vÞ in fact satisfy the field equation (1) and the initial conditions (3) and (19), one has:Z T

0

½ðDuÞ$v þ ðDvÞ$u� � hdt ¼ � 1
c2

Z T

0

½ _uu$ _vv þ _vv$ _uu� � hdt

and henceZ T

0

$u � $v
��

� 1

c2
_uu _vv


divh � ð$u � $v þ $v � $uÞ : $h

�
dt

¼
Z T

0

div $u � $v

�

� 1

c2
_uu_vv
�

h � ð$u � $v þ $v � $uÞ � h


dt: ð21Þ

This identity is then substituted into Eq. (20). Under the condition that the integral of the right-hand side of
(21) is convergent (this provision will prove important for crack problems), application of the divergence
formula yields the following boundary-only expression for dJ=db:

dJ

db
ðCÞ ¼

Z T

0

Z
oX

$uC � $vC

��
� 1

c2
_uuC _vvC



hn � ðqC$uC þ pC$vCÞ � h

�
dS dt ð22Þ

(having put hn ¼ h � n). An alternative form of the above expression can be obtained by splitting gradients
into tangential gradient $S and normal derivative according to the definition $Sw ¼ $w � ð$w � nÞn. It
reads:

dJ

db
ðCÞ ¼

Z T

0

Z
oX

$SuC � $SvC

��
� pq � 1

c2
_uuC _vvC



hn � ðqC$SuC þ pC$SvCÞ � h

�
dS dt: ð23Þ

Eq. (22) and its variant form (23) hold for any domain X. For cavity identification problems, one has
X ¼ B n V , h ¼ 0 on S (external boundary unperturbed) and p ¼ q ¼ 0 on the cavity boundary C, so that
Eq. (22) reduces to:

dJ

db
ðCÞ ¼

Z T

0

Z
C

$SuC � $SvC

�
� 1

c2
_uuC _vvC



hn dS dt: ð24Þ

Formula (24) allows the computation of the derivatives of any objective functional J of the type (5) with
respect to shape parameters. In particular, since $SuC;$SvC are known from the knowledge of uC and vC on
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C only, the sensitivity (24) is computable directly from the BEM solution of the primary and adjoint
problems.

7. Shape sensitivity: boundary integral formulation (crack problem)

Consider now the case where the unknown defect is a crack, i.e. the limiting case of a cavity bounded by
two surfaces Cþ and C� identical and of opposite orientations (Fig. 2). It is tempting to still apply Eq. (24)
to compute sensitivities with respect to crack location perturbations. However, Eq. (24) is not applicable to
cracks. For instance, consider a domain shape transformation such that hn ¼ 0 on the crack surface C. This
means that crack perturbations along the tangent plane at the crack front (i.e. crack extensions) are
allowed. But then Eq. (24) gives dJ=db ¼ 0, which is certainly not true in general. In contrast, when C is
the piecewise smooth boundary of a cavity, hn ¼ 0 implies that the cavity is unperturbed.
This apparent paradox is due to the fact that, for cracks, u and v behave like r1=2 in the vicinity of the

crack front (r: distance to the nearest point on the crack front). Hence, the divergence in the right-hand side
of (21) is integrable only away from the crack front, so that the divergence formula cannot be applied for
the entire domain X.
This section aims at showing how these difficulties can be overcome. For special cases of domain

transformations, the domain integral disappears or is easily transformed (Section 7.1), whereas the general
case is handled by isolating a neighbourhood of the crack front and performing either an additive de-
composition of the transformation velocity field (Section 7.2) or a limiting process (Section 7.3). Both
approaches yield a fully general three-dimensional sensitivity formula; the former is in integral-invariant
form and involves a residual domain integral while the latter uses the primary and adjoint singularity
factors without any domain integration.

7.1. Special cases of domain transformations

Isolate a neighbourhood D � X of the crack bounded by the surface oD ¼ C (Fig. 3) and consider the
transformation velocity fields h associated with special shape transformations of the crack: (a) translation
of D, (b) expansion of D and (c) rotation of D. These shape transformations are continuously extended so
that h ¼ 0, $h ¼ 0 on S.

Fig. 2. A crack bounded by two almost identical surfaces Cþ and C�.

Fig. 3. A crack C with a neighbourhood D.
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Then, Eq. (22) is valid for the subdomain X n D while advantage is taken of the special form of h in D:

(a) Translation: h ¼ h0 (constant) in D, hence $h ¼ 0, divh ¼ 0 in D;
(b) Expansion with respect to the origin: h ¼ gy (g: expansion coefficient) so that $h ¼ gI , divh ¼ mg (m:

space dimensionality) in D. In this case, the domain integral over D becomes:

g
Z

D
ðm
n

� 2Þ$uC � $vC � m
c2

_uuC _vvC

o
dX ¼ gðm � 2Þ

Z
C

pCvC dS � 2g
c2

Z
D
_uuC _vvC dX:

(c) Rotation: h ¼ Xy (X: constant tensor such that X þ XT ¼ 0) so that $h þ $hT ¼ 0 and divh ¼ 0. Then,
the domain integral in Eq. (20) vanishes.

Hence, using the exterior normal to C, i.e. interior to X n D, cases (a)–(c) are gathered in the following
result:

dJ

db
ðCÞ ¼

Z T

0

Z
C

1

c2
_uuC _vvC

��
� $uC � $vC



hn þ ð$uC � hÞqC þ ð$vC � hÞpC

�
dS dt

þ gðm � 2Þ
Z

C
pCvC dS � 2g

c2

Z
D
€uuCvC dX; ð25Þ

where h is as defined in cases (a)–(c) above. The last two integrals in Eq. (25) appear only for case (b).
The neighbourhood D of boundary S surrounding the crack is arbitrary. In case (b), due to the presence

of the domain integral over D, the sensitivity of the functional J, as expressed by Eq. (25), is neither a true
boundary-only expression, nor true path-independent integral, even if it does not depend on the choice of
the surface C.
The special domain transformations considered here follow the idea introduced by Dems and Mr�ooz

(1986, 1995) for elastostatics and harmonic problems. They proved that when the transformation of the
problem domain corresponds to translation, rotation or scale change then conservation rules and associ-
ated path-independent integrals can be derived. This idea was numerically implemented using boundary
elements for sensitivity analysis of cracks (Burczy�nnski and Polch, 1994) and cavities (Burczy�nnski and
Habarta, 1995) in static problems. The considerations presented in this section are then an extension of
previous works to time-domain dynamical problems.

7.2. Additive decomposition of transformation velocity near the crack front

To accommodate the general three-dimensional case with arbitrary crack shape perturbations, let the
domain X be partitioned into X ¼ ~XX [ ðD n CÞ, where D is a tubular neighbourhood of the crack front oC
bounded by the tubular surface R and ~XX ¼ X n D (Fig. 4); in addition, let ~CC ¼ C n D. Introduction of this
splitting into Eq. (20) yields:

Fig. 4. Crack C and tubular neighbourhood D of oC.
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dJ

db
ðCÞ ¼

Z T

0

Z
~XX

$uC � $vC

��
� 1

c2
_uuC _vvC



divh � ð$uC � $vC þ $vC � $uCÞ : $h

�
dXdt

þ
Z T

0

Z
D

$uC � $vC

��
� 1

c2
_uuC _vvC



divl � ð$uC � $vC þ $vC � $uCÞ : $l

�
dXdt

þ
Z T

0

Z
D

$uC � $vC

��
� 1

c2
_uuC _vvC



div~hh � ð$uC � $vC þ $vC � $uCÞ : $~hh

�
dXdt; ð26Þ

having put

l ¼ h in ~XX;
h � ~hh in Di ði ¼ 1; 2Þ;

�
ð27Þ

where ~hh denotes an arbitrarily chosen extension over D of the restriction hðsÞ of h on oC. By construction
l ¼ OðrÞ, which makes the right-hand side of (21) integrable in that case. Hence, identity (21) followed with
application of the divergence formula is used for the first two integrals in (26) above, resulting in:

dJ

db
ðCÞ ¼

Z T

0

Z
C

$SuC � $SvC

�
� 1

c2
_uuC _vvC



ðl � nÞdS dt

þ
Z T

0

Z
R

$uC � $vC


�
� 1

c2
_uuC _vvC

�
ð~hh � nÞ � ðpC$vC þ qC$uCÞ � ~hh



dS dt

þ
Z T

0

Z
D

$uC � $vC

��
� 1

c2
_uuC _vvC



div~hh � ð$uC � $vC þ $vC � $uCÞ : $~hh

�
dXdt: ð28Þ

Note that the integral over R, for which the normal n exterior to D is chosen, is the net result of two
contributions arising from domain integrations over ~XX (velocity h, normal �n) and D (velocity l, normal n),
respectively. Besides, the integral on C is convergent since l is built so as to vanish at the crack tips.
Eq. (28) holds independently of the tubular neighbourhood D chosen, although it is not in general path-

independent in the sense that a domain integral over D is involved as well and must be computed in
practice.
For two-dimensional problems, Eq. (28) can be given a simpler form. The tubular neighbourhood D

degenerates into disjoint neighbourhoods Di ði ¼ 1; 2Þ of the two crack tips xi, bounded by curves Ri

(Fig. 5). One can then take ~hh ¼ hi on Di, where the constant vector hi denotes the value hðxiÞ of the
transformation velocity at crack tip i. With this choice, $~hh ¼ 0 on D and the domain integral over D in Eq.
(28) vanishes, yielding the sensitivity formula:

dJ

db
ðCÞ ¼

Z T

0

Z
C

duC

ds
dvC

ds

��
� 1

c2
_uuC _vvC




ðl � nÞdsdt �

X2
i¼1

Z T

0

Z
Ci

duC

ds
dvC

ds

��
� pCqC � 1

c2
_uuC _vvC



ðhi � nÞ

� qC
duC

ds



þ pC

dvC

ds

�
hi � s

�
dsdt; ð29Þ

Fig. 5. Two-dimensional case: geometrical notation; local polar coordinates (r;/) associated with the crack tips x1;2.
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where l is still defined by (27), s denotes the arc length coordinate along C or Ri and s is the unit tangent
vector on Ri oriented in the direction of increasing s.
The sensitivity expressions (28) and (29) are general in that they hold for any sufficiently smooth

transformation velocity h and are not restricted to simple shape transformations.
For the special case of a crack extension, one has hn ¼ 0 on C and the integral over C thus reduces to

�
X2
i¼1

Z T

0

Z
Ci

$Su � $Sv
��

� 1

c2
_uu _vv




ðhi � nÞdS dt ð30Þ

(note that hi � n ¼ 0 at the tip xi, which makes the above integral convergent). If Ci are straight, then
hi � n ¼ 0 on Ci and Eq. (29) looks like the usual J-integral; see Section 10 for additional comments.
In three-dimensional situations, due to both the curvature of dC and the variability of h along dC, any

choice of ~hh will have non-zero gradient and divergence in D, hence no simple choice of ~hh is expected to make
the domain integral in (28) vanish.

7.3. Sensitivity formulation in terms of singularity factors

Eq. (28) holds irrespective of the tubular neighbourhood D chosen. In particular, in an effort to avoid the
domain integration, one is led to investigate the limiting form of Eq. (28) as D vanishes. To do so, let
De ¼ fx; distðx; oCÞ6 eg denote the tubular neighbourhood of oC having radius e in any plane normal to
oX, bounded by the tubular surface Re. The domain X is thus partitioned into X ¼ Xe [ ðDe n CÞ, where
Xe ¼ X n De and Ce ¼ C n De. Upon introducing this splitting into Eq. (20), Eq. (26) is again obtained, with
D and R replaced by De and Re. Applying to that identity the divergence formula for the contribution of Xe

(i.e. away from the crack front, where this is legitimate) and invoking boundary conditions (2)3 and (18)3,
one obtains:

dJ

db
ðCÞ ¼

Z T

0

Z
Ce

$SuC � $SvC

�
� 1

c2
_uuC _vvC



hn dS dt þ

Z T

0

Z
Re

$uC � $vC


�
� 1

c2
_uuC _vvC

�
hn

� ðpC$vC þ qC$uCÞ � h


dS dt þ

Z T

0

Z
De

$uC � $vC

��
� 1

c2
_uuC _vvC



divh

� ð$uC � $vC þ $vC � $uCÞ : $h

�
dXdt; ð31Þ

where n is the outward unit normal to Xe.
Now, the limiting form when e ! 0 of Eq. (31) is sought. In order to do so, one recalls that near the

crack front the potential v admits the expansion:

u ¼
ffiffiffiffiffiffi
r
2p

r
Kuðs; tÞ sin/

2
þOðdÞ ¼ usðr;/; zÞ þOðdÞ; ð32Þ

and similarly for v with singularity factor Kvðs; tÞ; ðr;/Þ denote local polar coordinates, attached to a point
xðsÞ of oC characterized by its arc length s, in the plane orthogonal to oC and emanating from xðsÞ, and z is
such that ðr;/; zÞ define cylindrical coordinates. Since by virtue of these expansions $u � $v ¼ Oð1=rÞ, the
integral over De vanishes in the limit (dV ¼ rð1þOðrÞÞdrd/ds in De). Moreover, it can be verified that
s$u � $vt ¼ OðrÞ, and hence that the integral over Ce becomes in the limit e ! 0 the corresponding, con-
vergent, integral over C. Finally, under mild smoothness assumptions on the closed curve oC and the
velocity field h, one has:
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Z T

0

Z
Re

$u � $v
��

� 1

c2
_uu _vv


hn � ðp$v þ q$uÞ � h

�
dS dt

¼
Z T

0

Z
oC

Z p

�p
$us � $vs½ �hnðsÞf � ps$vsð þ qs$usÞ � hðsÞged/dsdt þ Oðe1=2Þ:

The integral in the right-hand side, which yields a finite contribution as the radius e of the tubular
neighbourhood goes to zero, can be evaluated in a straightforward way using expansions (32). This last
calculation results in the following expression of dJ=db:

dJ

db
ðCÞ ¼ � 1

4

Z
C

hnðsÞ
Z T

0

Kuðs; tÞKvðs; tÞdtds: ð33Þ

8. Extension to elastodynamics

The analysis conducted in the previous sections can be extended to linear elastodynamics in a
straightforward way. The elastodynamic forward problem under consideration is such that the displace-
ment u, strain e and stress r are related by the field equations:

divr � q€uu ¼ 0; r ¼ C : e; e ¼ 1
2
ð$uþ $TuÞ ðin XÞ ð34Þ

(C : fourth-order elasticity tensor), the boundary conditions:

u ¼ �uu ðon SuÞ; p ¼ �pp ðon SpÞ; p ¼ 0 ðon CÞ ð35Þ

(where p � r � n is the traction vector, defined in terms of the outward unit normal n to X) and the initial
conditions:

u ¼ _uu ¼ 0 ðin X; at t ¼ 0Þ: ð36Þ

The generic objective function considered is of the form:

JðCÞ ¼ JðuC; pC;CÞ ¼
Z T

0

Z
Sp

uuðuC; x; tÞdS dt þ
Z T

0

Z
Su

upðpC; x; tÞdS dt: ð37Þ

8.1. Adjoint problem and domain integral formulation

The elastodynamic counterpart of the Lagrangian (13) is given by

Lðu; v; p; q;CÞ ¼ Jðu; p;CÞ þ
Z T

0

Z
X
½r : $vþ q€uu � v�dV dt �

Z T

0

Z
Su

ðu� �uuÞ � ~ppdS dt

�
Z T

0

Z
Su

p � vdS dt �
Z T

0

Z
Sp

�pp � vdS dt; ð38Þ

where ðv; qÞ, the test functions of the forward problem in weak form, act as Lagrange multipliers. Then, the
analysis of Section 5 essentially repeats itself. The elastodynamic adjoint state ðv; qÞ is found to solve the
field equations (34), the boundary conditions:

q ¼ � ouu

ou
ðon SpÞ; v ¼

oup

op
ðon SuÞ; q ¼ 0 ðon C
Þ; ð39Þ
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and the final conditions:

v ¼ _vv ¼ 0 ðin X; at t ¼ T Þ: ð40Þ
The derivative of J, expressed in domain integral form, is given by

dJ

db
¼ d

db
LðuC; vC; pC; qC;CÞ

¼
Z T

0

Z
X

rðuCÞ : $vC

hn
þ q€uuC � vC

i
divh � rðuCÞ � $vC½ þ rðvCÞ � $uC� : $h

o
dV dt: ð41Þ

8.2. Shape sensitivity: boundary integral formulation (cavity problem)

The counterpart of identity (21), verified for any elastodynamic displacements u and v satisfying the field
equation (34) and initial and final rest conditions, respectively, is:Z T

0

rðuÞ : $v
hn

þ q€uu � v
i
divh � rðuÞ � $v½ þ rðvÞ � $u� : $h

o
dt

¼
Z T

0

div ½rðuÞ : $v
�

� q _uu � _vv�h � ½rðuÞ � $vþ rðvÞ � $u�:h
�
dt: ð42Þ

This identity, when applied to (41) for the cavity problem, yields the following counterpart to (22):

dJ

db
¼
Z T

0

Z
oX

½rðuCÞ : $vC

n
� q _uuC � _vvC�hn � ½pC � $vC þ qC � $uC� � h

o
dS dt: ð43Þ

Since h ¼ 0 on S and p ¼ q ¼ 0 on C, the above equation reduces to:

dJ

db
¼
Z T

0

Z
C
½rðuCÞ : $vC � q _uuC � _vvC�hn dS dt: ð44Þ

The general expression of the bilinear form rðuÞ : $v in terms of $Su;$Sv and p ¼ q (assuming isotropic
elasticity) is:

rðuÞ : $v ¼ 1
l

p � q
�

� 1

2ð1� mÞ ðp � nÞ � ðq � nÞ
�
þ l

2m
1� m

divS udivS v

�

þ 1
2
ð$Suþ $TS uÞ : ð$Svþ $TS vÞ � ðn � $SuÞ � ðn � $SvÞ

�
; ð45Þ

where m is the Poisson ratio and l is the shear modulus. Since p ¼ q ¼ 0 on C, substitution of Eq. (45) into
Eq. (43) produces an expression of dJ=db in terms of the fields ðu; vÞ and their tangential derivatives, i.e.
easily computable in a BEM framework.

8.3. Shape sensitivity: boundary integral formulation (crack problem)

8.3.1. Special cases of domain transformations
The treatment of Section 7.1 is then applicable to time-domain elastodynamics, using Eq. (41) together

with the special form of h in D and Eq. (43) in X n D.
(a) Translation: the domain integral over D vanishes.
(b) Expansion: the domain integral over D becomes

g
Z

D
ðm
n

� 2ÞrðuCÞ : $vC � mq _uuC: _vvC

o
dX ¼ gðm � 2Þ

Z
C
pC � vC dS � 2qg

Z
D
_uuC � _vvC dX:

2378 M. Bonnet et al. / International Journal of Solids and Structures 39 (2002) 2365–2385



(c) Rotation: using the identity $w ¼ 2eðwÞ � $Tw (where eðwÞ: linearized strain tensor), the domain inte-
gral over D becomes, in component notation

Xaj

Z
D

rijðuÞva;j

�
þ rijðvÞua;i � 2½rijðuÞeaiðvÞ þ rijðvÞeaiðuÞ�

�
dX ð46Þ

For isotropic elasticity (k; l: Lam�ee constants), one has

rijðuÞeaiðvÞ þ rijðvÞeaiðuÞ ¼ k½ðdivuÞejaðvÞ þ ðdivvÞejaðuÞ� þ 2l½eijðuÞeiaðvÞ þ eijðvÞeiaðuÞ�;
which is symmetric with respect to the indices ða; jÞ, so that the inner product of this quantity with Xaj

vanishes. As a result, the integral over D, Eq. (46), becomes, after application of the divergence formula,
integration in time over ½0; T � and using initial conditions on u and final conditions on v:

Xaj

Z T

0

Z
C
½piðuÞva þ piðvÞua�dS dt þ Xaj

Z T

0

Z
D
½ _uua _vvj þ _uuj _vva�dXdt:

But the second integral in the above equation is symmetric with respect to the indices ða; jÞ; thus its inner
product with Xaj vanishes and only the first term remains.
Collecting all results, we have, respectively, for cases (a), (b) and (c):

dJ

db
¼

IðuC; vC; h0;CÞ ðtranslationÞ;

IðuC; vC; gx;CÞ þ gðm � 2Þ
Z T

0

Z
C
pC � vC dS dt � 2qg

Z T

0

Z
D
_uuC � _vvC dXdt ðexpansionÞ;

IðuC; vC;x � x;CÞ þ
Z T

0

Z
C
½pC � vC þ qC � uC� � xdS dt ðrotationÞ;

8>>>><
>>>>:

where

Iðu; v; h;CÞ ¼
Z T

0

Z
C

½q _uuC � _vvC

n
� rðuCÞ : $vC�hn þ ½pC � $vC þ qC � $uC� � h

o
dS dt:

8.3.2. Additive decomposition of transformation velocity near the crack front
In the same way as in Section 7.2, and using the same notations, Eq. (41) can be split according to:

dJ

db
¼
Z T

0

Z
~XX

½rðuCÞ : $vC

n
þ q€uuCÞ � vC�divh � ½rðuCÞ � $vC þ rðvC � $uC� : $h

o
dV dt

þ
Z T

0

Z
D

½rðuCÞ : $vC

n
þ q€uuC � vC�divh � ½rðuCÞ � $vC þ rðvCÞ � $uC� : $l

o
dV dt

þ
Z T

0

Z
D

½rðuCÞ : $vC

n
þ q€uuC � vC�div~hh � ½rðuCÞ � $vC þ rðvCÞ � $uC� : $~hh

o
dV dt; ð47Þ

and identity (42) followed by an application of the divergence formula to the first two integrals yields the
elastodynamic counterpart of Eq. (28):

dJ

db
¼
Z T

0

Z
C

½rðuCÞ : $vC

n
þ q€uuC � vC�ðl � nÞ � ½pC � $vC þ qC � $uC� � l

o
dS dt

þ
Z T

0

Z
R

½rðuCÞ : $vC

n
þ q€uuC � vC�ð~hh � nÞ � ½pC � $vC þ qC � $uC� � ~hh

o
dS dt

þ
Z T

0

Z
D

½rðuCÞ : $vC

n
þ q€uuC � vC�div~hh � ½rðuCÞ � $vC þ ~rrðvCÞ � $uC� : $~hh

o
dV dt: ð48Þ
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8.3.3. Sensitivity formulation in terms of stress intensity factors
Using the same notations as in Section 7.3, the limiting case for e ! 0 of

dJ

db
¼
Z T

0

Z
Re

½rðuCÞ : $vC

n
� q _uuC � _vvC�hn � ½pC � $vC þ qC � $uC� � h

o
dS dt

þ
Z T

0

Z
Ce

srðuCÞ : $vC � q _uuC � _vvCthn dS dt þ
Z T

0

Z
De

½rðuCÞ : $vC

n
þ q€uuC � vC�divh

� ½rðuCÞ � $vC þ rðvCÞ � $uC� : $h
o
dV dt ð49Þ

is sought. In order to do so, the well-known expansions of the forward displacement field near the crack
front (assuming isotropic elasticity) is used:

ur ¼
1

2l

ffiffiffiffiffiffi
r
2p

r
Ku
I ðs; tÞ cos

/
2
ð3

�
� 4m � cos/Þ þ Ku

IIðs; tÞ sin
/
2
ð4m � 1þ 3 cos/Þ



þOðrÞ

¼ uS
r ðr;/; sÞ þOðrÞ;

u/ ¼ 1

2l

ffiffiffiffiffiffi
r
2p

r �
� Ku

I ðs; tÞ sin
/
2
ð1� 4m � 3 cos/Þ þ Ku

IIðs; tÞ cos
/
2
ð4m � 5þ 3 cos/Þ



þOðrÞ

¼ uS
/ðr;/; sÞ þOðrÞ;

uz ¼
2Ku

IIIðs; tÞ
l

ffiffiffiffiffiffi
r
2p

r
sin

/
2
þOðrÞ ¼ uS

z ðr;/; sÞ þOðrÞ;

ð50Þ

and similarly for v with stress intensity factors Kv
I;II;III and leading term vS . Since by virtue of these

expansions rðuÞ : $v and rðvÞ : $u are Oð1=rÞ, the integral over De vanishes in the limit (dV ¼
rð1þOðrÞÞdrd/ds in De). Besides, it can be verified that sr

S : $vSt ¼ OðdÞ, and hence that the integral
over Ce becomes in the limit e ! 0 the corresponding, convergent, integral over C. Finally, under mild
smoothness assumptions on the closed curve oC and the velocity field h, one has:

Z T

0

Z
Re

½rðuCÞ : $vC

n
� q _uuC � _vvC�hn � ½pC � $vC þ qC � $uC� � h

o
dS dt

¼
Z T

0

Z
oC

Z p

�p
½rS : $vS �hnðsÞ
�

� ½pS � $vS þ qS � $uS� � hðsÞ
�
ed/dsdt þOðe1=2Þ:

The integral in the right-hand side, which yields a finite contribution as the radius e of the tubular
neighbourhood goes to zero, can be evaluated in a straightforward way using expansions (50). This last
calculation results in the following expression of dJ=db, counterpart of Eq. (33):

dJ

db
¼
Z

C
hnðsÞ

Z T

0

sr : $v� q _uu � _vvtdtdS � 1
l

Z
oC

hmðsÞ
Z T

0

ð1
�

� mÞ½Ku
IK

v
I þ Ku

IIK
v
II� þ Ku

IIIK
v
III

�
ðs; tÞdtds

þ 1� m
l

Z
oC

hnðsÞ
Z T

0

ðKu
IK

v
II þ Ku

IIK
v
I Þðs; tÞdtds; ð51Þ

having put hm ¼ h � m, where mðsÞ denotes the unit outward normal to oC lying in the tangent plane to C at
xðsÞ.
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9. Numerical examples

To illustrate concepts developed in this paper, the computation of sensitivities with respect to shape
perturbations of either a hole (Example 1, Fig. 6a) or a crack (Example 2, Fig. 7a) in an elastic plate are
presented. In both cases, the plate has linearly elastic and isotropic constitutive properties (Young’s
modulus E ¼ 200 GPa, Poisson ratio m ¼ 0:3, mass density q ¼ 5000 kg/m3), plane strain conditions and
dynamical loading are assumed. The forward problem is solved by a two-dimensional time-domain dual-
reciprocity elastodynamic BEM.
The objective function J is defined for both examples as:

JðCÞ ¼ � 1
2

Z T

0

Z
Sm

u21ðx; tÞdS dt; ð52Þ

where u1ðx; tÞ indicates displacements in x1 direction of nodes on the boundary Sm ¼ MN [ OP at time t
(Figs. 6 and 7). Sensitivities for Examples 1 and 2 are computed using Eqs. (43) and (51), respectively, and
compared with the first-order derivative of the second-degree polynomial approximation of J with respect
to the relevant shape parameter b.

Fig. 6. Example 1 (plate with a cavity): (a) geometrical configuration and notation; (b) boundary element model (case I in Table 1).

Fig. 7. Example 2 (plate with a crack): (a) geometrical configuration and notation; (b) boundary element model (case II in Table 1).
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9.1. Example 1

The first-order derivative of the objective function (52) with respect to a transformation parameter p of
the cavity is calculated for the rectangular plate shown in Fig. 6a. Two kinds of transformations of the
cavity are considered: translation along the x1 direction

Uðx; bÞ ¼ xþ be1 ð53Þ
(where e1 is a unit vector along the x1-direction) and expansion

Uðx; bÞ ¼ ð1þ bÞx ð54Þ
(in both cases, x denotes a point on the cavity boundary). The external boundary of the plate was dis-
cretized using 32 (for case I) or 48 (for cases II and III) continuos quadratic boundary elements of uniform
length, where cases I–III refer to Table 1. In all three cases, 10 continuos quadratic boundary elements of
uniform length were used for the cavity boundary, as well as 104 domain points. The number of sensor
points was 32 (case I) or 64 (cases II and III). The distribution of the boundary nodes and the domain
points is depicted for case I in Fig. 6b.
The results are presented, together with the corresponding derivatives calculated from a polynomial

approximation of J, in Table 1 for three cases of plate geometry and loading (using the geometrical
notations of Fig. 6a).

9.2. Example 2

The first-order derivative of the objective function (52) with respect to a transformation parameter p of
the crack is calculated for the rectangular plate shown in Fig. 7a, which contains an initially straight crack.
Two kinds of transformations of the crack are considered: translation along the x1 direction (again ac-
cording to Eq. (53)) and a deformation into parabolic shape according to:

Uðx; pÞ ¼ xþ bða2 � x22Þ; ð55Þ
where a is the initial half-length of the crack. The external boundary of the plate was discretized using 32
(for case I) or 48 (for cases II and III) continuos quadratic boundary elements of uniform length, where
cases I–III refer to Table 2. In all three cases, 20 discontinuous quadratic boundary elements were used for
the crack (with their lengths graded so that elements closer to the crack tips are shorter), as well as 100
domain points. The number of sensor points was 32 (case I) or 64 (cases II and III). The distribution of the
boundary nodes and the domain points is depicted for case II in Fig. 7b).

Table 1

Example 1: Sensitivity results for various cavity perturbations

Case Geometry and load Transformation Sensitivity analysis

dJ=db DJ=Db Error (%)

I L ¼ H ¼ 20, B ¼ 10, r ¼ 1 (mm)
�ppðtÞ ¼ �pp0HðtÞ ð�pp0 ¼ 0:4 MN=mmÞ Translation x1 0.0280 0.0275 1.8

06 t6 T ¼ 80 ls ðDt ¼ 0:2 lsÞ Expansion �1.161 �1.223 0.5

II L ¼ 40, H ¼ 20, B ¼ 30, r ¼ 1 (mm)
�ppðtÞ ¼ �pp0HðtÞ ð�pp0 ¼ 0:4 MN=mmÞ Translation x1 0.932 0.911 2.3

06 t6 T ¼ 80 ls ðDt ¼ 0:2 lsÞ Expansion �1.916 �1.949 1.7

III L ¼ 40, H ¼ 20, B ¼ 30, r ¼ 1 (mm)
�ppðtÞ ¼ �pp0 sinxt þ �pp0 Translation x1 2:6005� 10�6 2:6029� 10�6 1.0

(�pp0 ¼ 50 N=mm, x ¼ 79 kHz)
06 t6 T ¼ 80 ls ðDt ¼ 0:2 lsÞ Expansion )3:69� 10�6 )3:65� 10�6 0.9
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The results of derivatives are presented in Table 2 for three cases of geometry and loading of the plate,
together with the corresponding derivatives calculated from a polynomial approximation of J (using the
geometrical notations of Fig. 7a).

10. Discussion and concluding remarks

In the present work a shape sensitivity analysis for identification of internal cavities or cracks has been
presented. The main motivation of this paper was to explore the adjoint variable approach, in the presence
of cracks and in connection with BIE formulations of the forward problem.
First, a general formulation for the sensitivity with respect to the shape of a cavity of objective func-

tionals expressed as boundary integrals has been derived using the material derivative-adjoint variable
approach. The sensitivity of the functional has been expressed as a boundary integral.
In the case of a crack, the previous boundary-only expression is not applicable. However, revisiting the

discussion of the cavity problem, it has been shown that for two classes of crack perturbations the adjoint
variable approach to sensitivity analysis is still applicable in the presence of cracks. Firstly, when the
domain transformations considered consist of translation, rotation or expansion of the crack, the func-
tional sensitivity is expressed as an integral over an arbitrary surface surrounding the crack, supplemented
for the case of crack expansion in dynamics by a domain integral over the crack front neighbourhood
enclosed by this surface. This applies for arbitrary geometries, either three- and two-dimensional. Earlier
works on path-independent integral approach to sensitivity analysis are thus revisited and generalized.
Secondly, sensitivity formulas applicable to arbitrary shape perturbations were established by means of an
additive decomposition of the transformation velocity over a tubular neighbourhood of the crack front.
Thirdly, the limiting case of the latter results when the tubular neighbourhood shrinks around the crack
front has been shown to yield a boundary-only sensitivity formula involving the stress intensity factors of
both the forward and the adjoint solutions. All these results were obtained in connection with both scalar
wave and elastodynamic problems formulated in the time domain.
The analysis conducted in this paper is applicable without difficulty to objective functions of the form:

JðCÞ ¼ JðuC; pC;CÞ ¼
Z T

0

Z
Sp

uuðuC; x; tÞdS dt þ
Z T

0

Z
Su

upðpC; x; tÞdS dt þ
Z

C
wðxÞdS; ð56Þ

Table 2

Example 2: sensitivity results for various crack perturbations

Case Geometry and load Transformation Sensitivity analysis

dJ=db DJ=Db Error (%)

I L ¼ H ¼ 20, B ¼ 10, a ¼ 2:5 (mm)
�ppðtÞ ¼ �pp0HðtÞ ð�pp0 ¼ 0:4 MN=mmÞ Translation x1 10.359 10.445 0.8

06 t6 T ¼ 80 ls ðDt ¼ 0:2 lsÞ Parabolic 0.493 0.479 2.9

II L ¼ 40, H ¼ 20, B ¼ 30, a ¼ 2:5 (mm)
�ppðtÞ ¼ �pp0HðtÞ ð�pp0 ¼ 0:4 MN=mmÞ Translation x1 24.730 24.531 0.8

06 t6 T ¼ 80 ls ðDt ¼ 0:2 lsÞ Parabolic 1.355 1.332 1.7

III L ¼ 40, H ¼ 20, B ¼ 30, a ¼ 2:5 (mm)
�ppðtÞ ¼ �pp0 sinxt þ �pp0 Translation x1 2:474� 10�4 2:497� 10�4 1.0

(�pp0 ¼ 200 N=mm, x ¼ 1257 kHz)
06 t6 T ¼ 20 ls ðDt ¼ 0:2 lsÞ Parabolic 2:050� 10�5 2:053� 10�5 0.3
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where the last integral might for instance be used to formulate some a priori information about the defect
(for instance by penalizing high curvatures to avoid recovering oscillatory shapes). Since this last integral
depends on C in an explicit manner, one simply needs to invoke the differentiation formula (12). As a result,
the contributionZ

C
½$w � h þ wdivS h�dS

should be added to each of the sensitivity formulas (20), (22)–(26), (28)–(31), (33), (41), (43), (44), (47)–(49),
(51).
It is important to stress that Eq. (51) provides the sensitivity of an integral functional to a perturbation of

a fixed crack configuration, not a crack propagation, hence the use of expansions (50), valid for a crack
which does not physically propagate.
Eq. (51) is also applicable, with straightforward modifications, to elastostatics and elastodynamics in the

frequency domain. For instance, in elastostatics, JðCÞ is the potential energy at equilibrium for the par-
ticular choice uu ¼ �ð�pp � uÞ=2, up ¼ ð�uu � pÞ=2 in Eq. (5). For this special case, the adjoint solution turns out
to be ~uu ¼ ð1=2Þu, i.e. Kv

I ¼ Ku
I =2, etc. In Eq. (51), the factor of hmðsÞ turns out to be, as expected, minus the

energy release rate GðsÞ, i.e. minus the J1-integral, whereas the factor of hnðsÞ is the three-dimensional
generalization of the J2-integral (Budiansky and Rice, 1973; Bui, 1978). Finally, with the choice Sp ¼ S;
su ¼ ; and up ¼ �pp � ûu� u � p̂p, where ûu; p̂p are the boundary traces of a pre-selected auxiliary elastodynamic
state with final homogeneous conditions, one finds that ~uu ¼ ûu and that the factor of hmðsÞ in (51) is the three-
dimensional generalization of the so-called H-integral (Bui and Maigre, 1988).
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